FREE-RADICAL REACTIONS OF SOME PHENYLTHIO-2,3-DIDEOXYHEX-2-ENOPYRANOSIDES

J. L. Marco-Contelles^{a^*}, C. Fernández^a, Ana Gómez^a and N. Martín-León^b

^aInstituto de Química Orgánica General, C.S.I.C., Juan de la Cierva 3, 28006-Madrid (Spain)

^bDepartamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid (Spain)

Abstract - The free-radical reaction of some phenylthio-2,3-dideoxyhex-2-enopyranosides with allyltri-n-butyl stannane has been studied.

Free-radical reactions and their applications in organic synthesis have attracted considerable attention in recent years; in spite of this growing interest, several problems, regarding the selectivity and the reactivity, remain to be solved.² Particularly, the chemistry of allylic free-radical species has been almost neglected, scarcely analyzed³ or limited to intramolecular processes.⁴

In this communication we report our preliminary studies on the reaction of allyl freeradicals derived from phenylthio-2,3-dideoxyhex-2-enopyranosides.⁵ Valverde and coworkers have recently described a method for the alkylation and acylation of these compounds at the anomeric center. ⁶ Continuing these efforts in this area⁷ and following Keck's pioneer work in the synthesis of C-allyl glycosides using saturated phenylthio glycosides, we were attracted by substrates of type A (see Scheme), as obvious precursors⁹ for a C₁-C₃ delocalized allyl free-radical in a

Scheme

carbohydrate-like system; we have studied its regio- and stereoselectivity in the reaction with allyltri-n-butyl stannane, analyzing the effect of different substituents at C-6 and C-4, and the absolute configuration at C-4.

With this in mind, we have synthesized compounds $1-4$, 6 5 and 6 , 10 Initial experiments,

conducted thermally, using AIBN as initiator, were disappointing; so, photolysis 8 was next tried. Under these conditions,^{**} compound 1 gave after careful flash-chromatography, pure compound 9α {oil, $\left[\alpha\right]_{D}^{23}$ +64° (c 1.0, CHCl₃) }, 9β {oil $\left[\alpha\right]_{D}^{23}$ +130° (c 1.24, CHCl₃)} and 10 $\alpha + \beta$, as a mixture that we could not separate, in the ratios²² and yields shown in Table 1. Compounds 9 have beer previously synthesized by Lewis-acid promoted allyltrimethyl silane reaction with tri-0-acetyl-Dglucal. 13 The stereochemistry at C-l or C-3 in the reaction products was established by careful ¹H-NMR analysis and comparison with the spectroscopic data recorded in literature.¹⁴ The minor C-1 isomer, 9 B, the most dextrorotatory, ¹⁴b showed a strong NOE effect at H-1 (63.89, m) upon irradiation of H-5 (6 3.66, ddd, J_{5 6a} = 3 Hz, J_{5 6b} = 5.3 Hz, J_{4 5} = 9.2 Hz),¹³ and a coupling constant between H-4 and H-5 equal to 9.2 Hz, which is in accordance with a 4 H_c preferre conformation; in contrast, in compound 9α this coupling constant is 5.9 Hz, due to the confor-

		9 (%) $(\alpha : \beta)$ $X = Y = OAC$ 10 (%) $(\alpha : \beta)$ $X = Y = OAC$	Yield $(\%)$ $(9 + 10)$
$1 \quad X = Y = OAC$	60 $(1.2:1)$	40 $(1:2)$	40
2 $X = Y = OH$	55(1.5:1)	45(1:1.3)	35^{α}
3 $X = Y = OSi(CH_3)_2Bu^t$	59(1:1)	41 $(1:1)$	43 ^b
4 $X = OSi(CH_3)_2Bu^t$			
$Y = OH$	58 $(1.7:1)$	43 $(1:1)$	47^{b}

Table 1. ^a Overall yield after photolysis and acetylation. ^b Overall yield after photolysis, desilylation and acetylation.

mational mobility. ^{14a} The major C-3 isomer, 10⁸, showed, as expected, a strong NOE effect between H-3 and H-5, and a vicinal coupling constant between H-3 and H-4 equal to 9.5 Hz. Compounds 2-4, after photolysis, in the same conditions, 11 and acetylation (compound 2) or desilylation and acetylation (compounds 3 and 4)¹⁵ gave again the products 9 and 10^{16} in the ratios and yields recorded in Table 7.

In the galacto series we have observed similar results. Compound 6, after photolysis, 11 desilylation and full acetylation, 15 was transformed into compounds $\boldsymbol{11^{17,18}}$ and $\boldsymbol{12,^{19}}$ obtain: also from compound 5 after photolysis, in the ratios and yields shown in Table II. The assignment of α configuration to the major C-1 isomer was founded on the basis of similarity of its ¹H-NMR spectrum with the corresponding to 9α , and comparison with the spectroscopic data reported by Danishefsky^{20a} for analogous compounds. The exclusive, or major, C-3 isomer 12 showed a

vicinal coupling constant $J_{3,4}$ = 1.7 Hz, which indicates a diequatorial arrangement of protons H-3 and H-4.20b

In view of the values obtained for the C-1 $(\alpha : \beta)/C$ -3 $(\alpha : \beta)$ isomers, studies were conducted in order to evaluate the stability of the final products. Under the reaction conditions, neither $9\alpha, \beta$ nor $10\alpha+\beta$ isomerize and were recovered unchanged. This fact being established, and from the data in **Tab&6 I** and II, we can conclude that: a) the C-l substituted C-ally1 glycosides are obtained in a slightly greater amount than the C-3 substituted isomers, this being due to the stabilizing effect of an α -oxygen substituted on a free radical;²¹ b) in the C-1 substituted products the major isomer is always a oriented; this facial selectivity is probably due, apart of steric factors, to the radical anomeric effect; 22 and c) in the *queo* series the major C-3 isomer is β oriented, while in the galacto group, the major C-3 isomer is almost exclusively a oriented; this fact could be predicted in terms of the steric effects derived from substituents in 13 position: axial substituents cause a shift in the direction of axial attack and equatorial substituents direct the reaction towards equatorial attack.²

Tat&e Il. 'Overall yield after photolysis, desilylation and acetylation. *'Only* the a isomer was detected.

In summary, we have analyzed for the first time the reactivity of an allylic free-radical in a carbohydrate-like system. Moderate yields of C-3 branched chain sugars²³ and C-glycosides with modest stereoselectivity, have been obtained in the free-radical reaction of some phenylthio-2,3-dideoxyhex-2-enopyranosides with allyltri-n-butyl stannane.

Acknowledgments. - We wish to thank DGICYT (Grant IR 84-0089) for financial support, p_1 . Valverde and $\overline{p_1}$. Bernabé for helpful suggestions.

REFERENCES AND NOTES

- 1. a) B. Giese, "Radicals *in Organic Synthesis: Formation of Carbon-Carbon Bonds";* J. E.
Baldwin, Ed.; Pergamon Press, New York, 1986; b) D. H. Hart, Science,(1984), **223**, 886; c) **M.** Bamaiah, T&tah&on, **(1987), 43, 3541; d) D.P.** Curran, *SynXhtiA,* (1988), 417, 489.
- 2. B. Giese, Angew. Chem., Int. Ed., (1989), 28, 969.
- 3. a) D. C. Rathbury, P. J. Parsons, and 1. Pinto, J. Chem. Sot., *Chm. Cotmun.,* (1988), 81; b) A. Johns and J. A. Murphy, Tetrahedron Lett., (1988), 29, 837; c) T. Ueno, U. Chino, and M. Okawara, *Tetrahedron Lett.*, (1982), 23, 2575; d) D.H.R. Barton and D. Crich, T*etrahedr* Lett., (1984), 25, 2587; d) G. E. Keck and J. H. Byers, J. Otg. *Chem.,* (1985), 50, 5442.
- 4. G. Stork and M. E. Reynolds, *J. Am. Chem. Soc.,* (1988), 110, 6911.
- 5. Carbohydrate derivatives have been recently used as the substrates of choice for the analysi of some free-radical reactions; a) C.S. Wilcox and L. M. Thomasco, *J. Org. Chem.*, (1985) 50, 546; b) R. Tsang and B. Fraser-Reid, J. Am. *Chem. SOC.,* (1986), 108, 2116; c) T. V. Rajanbabu, J. Anr. Ohem. SOC., (1987), 109, 609; d) P. A. Barlett, K. L. McLaren, and P. C. Ting, J. Am. *Chem.* Sac., (1988), 110, 1633. e) B.W.A. Yeung, J.L. Marco-Contelles, and B. Fraser-Reid, *Chem. Cotmun.,* (1989), 1160.
- 6. S. Valverde, S. Garcfa-Ochoa, and M. Martfn-Lomas, J. *Chem. Sot., Chun. Commun.,* (1987), 383.
- 7. M. Brakte, P. Lhoste, and D. Sinou, J. O&g. *Chem.,* (1989), 54, 1890, and references cited therein.
- a. a) G. E. Keck, E. J. Enholm, J. A. Yates and M. R. Wiley, *Tetrahedron*, (1985), 41, 4079; b) G. E. Keck, E. J. Enholm, D. F. Kachensky, *Tetrahedron Lett.*, (1984), 25, 1867.
- 9. Radical intramolecular cyclizations of thioketals have been described: V. Yadav and A. G. Fallis, *Tetaahedton Lett.,* (1989), 30, 3283; (1988), 29, 897.
- 10. Compound 6 has been obtained from 2 by Mitsunobu inversion at C-4 (86 %), hydrolysis (MeOH, MeONa, 98 %) and silylation at C-6 (99%). Compound 5 has been obtained from 6 after desilylation and full acetylation (75 %).
- 11. In a typical experiment, the starting material, dissolved in dry toluene (0.01 M), degassed with argon, was treated with allytri- n -butyl stannane (2 eq) and photolyzed in an immersion wall apparatus with a Pyrex filter and a 125 W medium-pressure Hg arc lamp for 18-24 h. The solvent was evaporated and the residue dissolved in ether, treated with 10% potassium fluoride aqueous solution and stirred overnight. The organic layer was separated, dried and evaporated. The residue was finally submitted to flash-chromatography.
- 12. The crude mixtures were analyzed in capillar GLC: $OV-1$ on $SiO₂$, 25 m, 0.22 mm ϕ , 100°C \rightarrow 250°C (2°C/min): 10 β (t_r 26.89 min), 10 α (27.40 min), 9 β (27.86 min), 9 α (29.52 min); 12 α $(t_1 18.37 min)$, 11 β (18.72 min), 12 β (19.32 min), 11 α (20.24 min).
- 13. S. Danishefsky and J. F. Kerwin, J. Org. Chem., (1982), 47, 3805.
- 14. a) R. D. Dawe and B. Fraser-Reid, J. 0ng. Chem., (1984), 49, 522; b) G. Casiraghi, M. Cornia, L. Colombo, G. Rassu, G. G. Fava, M. F. Bellichi and L. Zeth, *Tetrahedron Lett.* (1988) 29, 5549.
- 15. Desilylation was promoted under standard conditions: tetra-n-butylammonium fluoride, O°C -+ room temperature, overnight, and evaporation. When necessary, acetylations were performed with acetic anhydride/pyridine, room temperature, 24 h.
- 16. All new compounds gave satisfactory analytical and spectroscopic data
11α: Oil; |α|25-189° (c 1.7, CHCl3); ¹H-NMR (300 MHz, CDCl3) δ 6.03
- 17. -189° (c 1.7, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) 66.03 (dd, J_{2.3} = 10.3 Hz, J_{1 2} = 2.7 Hz, HH, H-2), 5.95 (m, 1H, H-3), 5.81 (ddd, J = 6.9, 10.2 and 15.9 Hz, 1H, H-8)
5.14-5.08 (m, 2H, H-9), 5.04 (dd, J_{4.3} = 4.9 Hz, J_{4.5} = 2.4 Hz, 1H, H-4), 4.32-4.25 (m, 1H H-1), 4.14 (dd, J_5 _{6a} = 2.0 4.9 Hz, J_{4.5} = 2.4 Hz, 1H, H-4), 4.32-4.25 (m, 1H, H-5), 2.42-2.32 (m, 1H, H-7a), 2.27-2.17 (m, 1H, H-J_{5 6a} = 2.0 Hz, 1H, H-'6a), 4.12 (dd, 'J $T_{\rm D}$ 2.2 Hz, lH, H-6b), 4.07 (m, lH, 2.02-2.01 (s, s, 3H, 3H, CH₃COO-No NOE effect was observed in H-1 upon irradiation of H-5.
- 18. 118: Oil; α β -204° (c 0.4) H-3), 5.82 (ddd, J=7, 10 and 16 Hz, 1H, H-8), 5.18-5.01 (m, 3H, H-4, 2H-9), 4.18 (m, 2H, CHCl); H NMR (300 MHz CDCl) 66 00-5 88 (m 2H H-2 H-6), 4.15 (m, 1H, H-1), 3.87 (dd, J_{5 6}=6.7, J_{4 5}=2.4 Hz, 1H, H-5), 2.50-2.25 (m, 2H, H-7), 2.05, 2.03 (s,s, 3H, CH₃COO-). Irradiating at' H-1 showed a clear NOE effect at H-5. , J_5 $6 = 6.7$, J_4 $5 = 2.4$ Hz,
- 19. 12 α : Oil; $|\alpha| \stackrel{\triangle}{\sim}$ +1300 (c 1.5, CHC13); 'H-NMR (300 MHz H-1), 5.80 (m, 1H, H-8), 5.14-5.04 (m, 2H, H-9), 4.92 (m, = 1,2 Hz, 1H, H-4), 4.74 (ddd, J_{2, 4} = 1.4 Hz, J₂ 2H, H-6), 4.10 (m, 1H, H-5), 2.28-2.10 (m, 3H, H-3, 2H COO-). We could not isolate pure the 12β isomer in the reaction of compound 5.
- 20. a) S. Danishefsky, S. DeNinno, and P. Lartey, J. Am. *Chem. SOC.,* (1987), 109, 2082; b) D-A. Chalmers and RH. Hall, *J. Chem. Sac. P&in Rand. 17,* (1974), 728.
- 21. H.G. Viehe, Z. Janousek, and R. Merenyi, Eds.; "Substituents Effects in Radical Chemis-*&Y",* Reidel, Dordrecht, 1986.
- 22. For a recent review: G. Descotes, J. Carbohydr. Chem., (1988), 7, 1.
- 23. a) K. S. Gröninger, K. F. Jäger, and B. Giese, Liebigs Ann. Chem., (1987), 731; b) T. Ogihara and O. Mitsunobu, *Tetrahedron Lett.*, (1983), 24, 3505; c) O. Mitsunobu, M. Yoshiba M. Takiya, K. Kubo, S. Masuyama, I. Satoh, and H. lwami, *Chem. L&t.,* (1989), 809.

(Received in UK 17 Jarmary 1990)